Bifurcation diagram of solutions to elliptic equation with exponential nonlinearity in higher dimensions

نویسندگان

  • Hiroaki Kikuchi
  • Juncheng Wei
چکیده

We consider the following semilinear elliptic equation:    −∆u = λeup in B1, u = 0 on ∂B1, (0.1) where B1 is the unit ball in R, d ≥ 3, λ > 0 and p > 0. First, following Merle and Peletier [13], we show that there exists a unique eigenvalue λp,∞ such that (0.1) has a solution (λp,∞,Wp) satisfying lim|x|→0 Wp(x) = ∞. Secondly, we study a bifurcation diagram of regular solutions to (0.1). It follows from the result of Dancer [4] that (0.1) has an unbounded bifurcation branch of regular solutions which emanates from (λ, u) = (0, 0). Here, using the singular solution, we show that the bifurcation branch has infinitely many turning points around λp,∞ in case of 3 ≤ d ≤ 9. We also investigate the Morse index of the singular solution in case of d ≥ 11.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morse indices and Exact multiplicity of solutions to Semilinear Elliptic Problems

We obtain precise global bifurcation diagrams for both one-sign and sign-changing solutions of a semilinear elliptic equation, for the nonlinearity being asymptotically linear. Our method combines the bifurcation approach and spectral analysis.

متن کامل

Semilinear Elliptic Equations with Generalized Cubic Nonlinearities

A semilinear elliptic equation with generalized cubic nonlinearity is studied. Global bifurcation diagrams and the existence of multiple solutions are obtained and in certain cases, exact multiplicity is proved.

متن کامل

Entire Solutions for a Semilinear Fourth Order Elliptic Problem with Exponential Nonlinearity∗

We investigate entire radial solutions of the semilinear biharmonic equation ∆u = λ exp(u) in Rn, n ≥ 5, λ > 0 being a parameter. We show that singular radial solutions of the corresponding Dirichlet problem in the unit ball cannot be extended as solutions of the equation to the whole of Rn. In particular, they cannot be expanded as power series in the natural variable s = log |x|. Next, we pro...

متن کامل

Exact multiplicity of boundary blow-up solutions for a bistable problem

We prove the exact multiplicity of positive boundary blow-up solutions to a semilinear elliptic equation with bistable nonlinearity for the one-dimensional case. We use time-mapping techniques to determine the exact shape of the bifurcation diagram.

متن کامل

A Diffusion Equation with Exponential Nonlinearity Recant Developments

The purpose of this paper is to analyze in detail a special nonlinear partial differential equation (nPDE) of the second order which is important in physical, chemical and technical applications. The present nPDE describes nonlinear diffusion and is of interest in several parts of physics, chemistry and engineering problems alike. Since nature is not linear intrinsically the nonlinear case is t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016